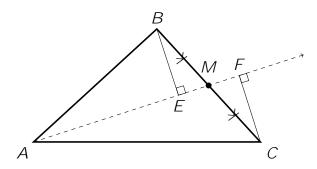
MATHEMATICS ENRICHMENT CLUB. Solution Sheet 11, 13 August, 2018

1. Let *BE* and *CF* be perpendiculars dropped from *B* and *C* to *AM*, extended if necessary. We need to prove that BE = CF.



Since *BE* and *CF* are both perpendicular to AM, $\BED = \DFC = 90$, and since *AM* is a median, BM = CM. Moreover, $\$

- 4. (a) $0.75_{10} = 0.11_2$, since $0.75 = \frac{1}{2} + \frac{1}{4} = 1$ $\frac{1}{2^1} + 1$ $\frac{1}{2^2}$
 - (b) $0.96875_{10} = 0.11111_2$ in base 2.
 - (C)

$$\frac{1}{2} + \frac{1}{4} + \frac{1}{2^k} + = 0.1_2 = 1$$

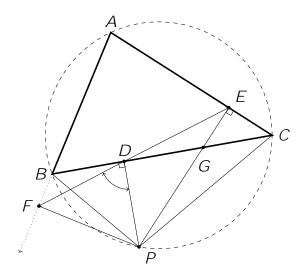
If you are not convinced of this last fact, let $x = 0.1_2$. Then

$2x = 1.1_2$	(1)	
$x = 0.1_2$	(2)	
<i>x</i> = 1	(1)	(2)

5. Firstly, we note that x^3 $y^3 = (x \ y)(x^2 + xy + y^2)$. Then, we not the prime factorisation of 1729 = 7 13 19. Thus the possible factors of 1729 are 1, 7, 13, 19, 91, 133, 247, and 1729 itself. If we assume that $x \ y = 1$, then

$$x^2 + xy + y^2 = 1729$$
:

Furthermore, we can substitute x = y + 1 into this second equation, thereby obtaining a quadratic in y. In this case, the quadratic does not have integer solutions, as is not a perfect square. However, continuing this way through all the possibilities, we obtain the solutions (1; 12), (1; 12), (2. Join *CP* and *PB* as shown.



Let $\land ACB = \land \land BCP =$ and $\land FDP =$. Let *D* and *E* be the feet of perpendiculars from *P*