Let a be the greatest number written on a blackboard, pick another integer b o board, then a b. Furthermore, there is an integer n 0 such that 2^n a < 2^{n+1} , so that $2^n < a + b$ 2a < 2^{n+2} . Since $a + b$ must be a power of two, we must have $a + b$; m[5t hav0w85431f 84 -4.339 Td n(b)]TJ/F17 7.9701 Tf 5.138 0 Td [1+2

 $2 =16+4=32+$

 n -digit

If so contributes to the sum by an amount of $(n \ 1)! \ (1 + 2 + 3 + \dots + n)$.

ke a similar argument by xing the second last digit, so that the second all combinations of n -digits long numbers contributes to the sum by an $n \quad 1)! \quad (1 + 2 + 3 + \dots + n) \quad 10.$

his for all digits, then the total sum is $(n \ 1)! \ (1 + 2 + 3 + \dots + n)$ $(1^2 + \cdots + 10^n)$.

4. Consider the above diagram. By Pythagoras, $a = \sqrt{4 + x^2 + 4}$ and $b = \sqrt{2 + 4^2 + 16}$; the two roads that connects the point A to B has length a and b . The total length of the roads; that is $a + b$ is minimised when the two lines AC and CB in the diagram are co-linear. Therefore, the combine length of the two roads is $\sqrt{2^2 + 4^2 + 8^2} = 10$.

5. (a) Since the lines KM and CB are parallel, the triangles 4 KMO and 4 OLC are similar. In particular, by angles and ratios we have the formula

$$
\frac{jKOj}{jKLj \ j \ KOj} = \frac{jOMj}{jMCj \ j \ OMj}.
$$

- (b) Since M is the midpoint of AB and the line KM , CB are parallel, by the midpoint theorem K is the midpoint of AL. Additionally, by using the fact that $2jMCj =$ jALj, we have $|KL| = |MC|$. Now substituting $|KL| = |MC|$ into the formula from part (a), we obtain $jKOj = jOM$. Therefore the triangles 4 KMO and 4 OLC are isosceles. Finally, using the condition $\triangle OLC = 45$ we have $\triangle COL =$ 90 .
- 6. Since the constant coe cient of $p(x)$ is 3, abcd = 3. Therefore,

$$
\frac{abc}{d} = \frac{3}{d^2}, \qquad \frac{acd}{b} = \frac{3}{b^2}, \qquad \frac{abd}{c} = \frac{3}{c^2}, \qquad \frac{bcd}{a} = \frac{3}{a^2}.
$$

Let $y = 3 = x^2$, then $p(\overline{3} = y) = 0$ when $p(x) = 0$. Therefore rearranging $p(\overline{3} = y) = 0$ gives a polynomial of y with the required roots.