board, then a = b. Furthermore, there is an integer n = 0 such that $2^n = a < 2^{n+1}$, so that $2^n < a + b = 2a < 2^{n+2}$. Since a + b must be a power of two, we must have a + b;m[5t hav0w85431f 84 -4.339 Td n(b)]TJ/F17 7.9701 Tf 5.138 0 Td [1+2

² =16 + 4=32 +

n-digit

The sum by an amount of $(n + 1)! (1 + 2 + 3 + \dots + n)$.

the second last digit, so that the second last digit, so that the second all combinations of *n*-digits long numbers contributes to the sum by an n = 1! $(1 + 2 + 3 + \dots + n) = 10$.

his for all digits, then the total sum is $(n \ 1)! \ (1 + 2 + 3 + ::: + n)^2 + ::: + 10^n)$.

4. Consider the above diagram. By Pythagoras, $a = {}^{p}\overline{(4 + x)^{2} + 4}$ and $b = {}^{p}\overline{(x - 4)^{2} + 16}$; the two roads that connects the point *A* to *B* has length *a* and *b*. The total length of the roads; that is a + b is minimised when the two lines *AC* and \underline{CB} in the diagram are co-linear. Therefore, the combine length of the two roads is ${}^{c}\overline{(2 + 4)^{2} + 8^{2}} = 10$.

5. (a) Since the lines *KM* and *CB* are parallel, the triangles **4** *KMO* and **4** *OLC* are similar. In particular, by angles and ratios we have the formula

$$\frac{jKOj}{jKLj \ j \ KOj} = \frac{jOMj}{jMCj \ j \ OMj}$$

- (b) Since *M* is the midpoint of *AB* and the line *KM*, *CB* are parallel, by the midpoint theorem *K* is the midpoint of *AL*. Additionally, by using the fact that 2jMCj = jALj, we have jKLj = jMCj. Now substituting jKLj = jMCj into the formula from part (*a*), we obtain jKOj = jOM. Therefore the triangles 4 *KMO* and 4 *OLC* are isosceles. Finally, using the condition $\OLC = 45$ we have $\COL = 90$.
- 6. Since the constant coe cient of p(x) is 3, abcd = 3. Therefore,

$$\frac{abc}{d} = \frac{3}{d^2}; \qquad \frac{acd}{b} = \frac{3}{b^2}; \qquad \frac{abd}{c} = \frac{3}{c^2}; \qquad \frac{bcd}{a} = \frac{3}{a^2};$$

Let $y = 3 = x^2$, then $p(\sqrt{3-y}) = 0$ when p(x) = 0. Therefore rearranging $p(\sqrt{3-y}) = 0$ gives a polynomial of y with the required roots.