

MATHEMATICS ENRICHMENT CLUB. 1 Solution Sheet 6, June 11, 2013

- 1. The prime factorisation of $770 = 2 \quad 5 \quad 7 \quad 11$, so assuming by adults we mean over 18 year olds, our two people are 22 and 35.
- 2. (Disclaimer: Introduction `group theory' answer this question can be answered more simply by deductive logic, or guess and check (maximum 13 guesses), but this question's close ties to group theory I think warrants a bit of abstract algebra. If you just want the answer, skip to the end©)

Let's write the card shu er as a function $\,$, where $\,$ (n) is the new position of thenth card after one shu e. We'll also write iterated shu es as m , meaningm compositions</sup> of the shuing function . As a nal piece of notation, we'll introduce k-cycles', which are written as a collection of numbers in a pair of brackets and indicate that the value of each number is that to its immediate right (or the rst position if at the end of the cycle), e.g. $(1 2 3)$ means $1 \quad 2$, $2! \quad 3$ and $3! \quad 1$.

The information given tells us

$$
^2 = (1\ 12\ 5\ 2\ 7\ 9\ 11\ 10\ 4\ 13\ 3\ 8\ 6)
$$

We can multiply (compose) cycles together just by tracing from left (i.e. applying the cycles to each number left to right), for example

$$
(1 2 3)(2 1 4) = (1)(2 3 4) = (2 3 4)
$$

since 1! 2! 1, 2! 3, 3! 1! 4 and 4! $2²$ In this manner we can repeatedly multiply 2 and we nd

 26 = (1)(2)(3)(4)(5)(6)(7)(8)(9)(10)(11)(12)(13);

i.e. shu ing 26 times puts the cards back in to the order they originally were. This means the `order' of is 26, where the `order' of a permutation is how many times

¹Some of the problems here come from T. Gagen, Uni. of Syd. and from E. Szekeres , Macquarie Uni.

²An interesting result is that every permutation can be written as a product of 2-cycles, e.g. (1 2 3) = (1 3)(3 2), and even though this 2-cycle representation is not unique, it is always made up of either an odd or even number of 2-cycles.

you multiply it by itself to get the identify function - one that leaves everything alone like the one above.

Since is, at most, a 13-cycle its order is 13. So the order of could be $12:13$ or 26 in order to satisfy $26 = ()$, but it can't be 26, it's not 1 or 2 from the given information, so it must have order 13.

So now we work out ¹², then we can determine so that $12 = (1)$. I worked out 12 by rst performing

$$
2^2 = 2 = (1\ 5\ 7\ 11\ 4\ 3\ 6\ 12\ 2\ 9\ 10\ 13\ 8)
$$

then

 $8 = 44 = (17462108511312913)$

and nally

 $12 = 84 = (11169873213541210)$

To nd I then wrote it as a 2-cycle representation

 $= (a 1)(b 2)(c 3)(d 4)$ (m 13)

and work through, from left to right, making sure I put the numbers back where they started. For instance $1^2(1) = 11$, so seta = 11, $1^2(2) = 13$, so b = 13, $1^2(3) = 2$ so $c = 13$ (I've already made $b = 13$, and so far 2! 13 so now I make 13 3 after, so that overall 2 ! 13). Continuing, we nd

 $=$ (11 1)(13 2)(13 3)(12 4)(12 5)(9 6)(13 7)(13 8)(13 9)(11 10)(11 12)(11 13) $=$ (1 10 12 4 5 13 2 3 7 8 9 6 11)

Finally, this means the cards originally ordered, 2 ; 3; 4; 5; 6; 7; 8; 9; 10; J; Q; K become, after one shue, J; K; 2; Q; 4; 9; 3; 7; 8; A; 6; 10; 5.

- 3. (a) Draw the right angled triangleABC with right angle at C. Let D be the midpoint of AB , and E a point on AC such that AC ? DE . Then ADE is similar to ABC (three angles equal). Since AD = $\frac{1}{2}$ $\frac{1}{2}$ AB then AE = $\frac{1}{2}$ $\frac{1}{2}$ AC or rather $AE = EC$. Now AED is congruent to \widehat{CED} (two sides equal, $AE = EC$, DE common, and an included angle $AED = \triangle DEC$). Thus $\frac{1}{2}AB = AD = DC$.
	- (b) From part i) we see $DB_1 = B_1C$ and $DC_1 = C_1B$. Note that CB_1A_1 is similar to CAB (two sides in ratio and an included angle). The sides are in ratio 1 : 2 so $A_1B_1 = \frac{1}{2}$ $\frac{1}{2}AB = C_1B$, and so $A_1B_1 = DC_1$. Similarly BC_1A_1 is similar to BAC, so $\bar{C}_1A_1 = B_1C = B_1A_1$. Thus B_1C_1D and $B_1C_1A_1$ are congruent because they have 3 equal sides.
- 4. Following the hint, we must have $\mathbf{\hat{a}}_1$ 1 = n or 3m 1 = 2n, since $\mathbf{\hat{a}}_1$ 1 < 3n. So

3(3m 1) 1 = km; k 2 Z
\n(9 k)m = 4
\nm =
$$
\frac{4}{9}
$$
 k
\nm = 4; 2; or 1;

$$
3 \frac{3m}{2} \quad 1 = km
$$

9m 3 2 = 2km

$$
m = \frac{5}{9 \quad 2k}
$$

$$
m = 5; \text{ or 1:}
$$

Thus the pairs are $(1, 1)$, $(1, 2)$, $(2, 5)$, $(4, 11)$ and $(5, 7)$.

- 5. (a) $(12) = 4$, $(30) = 8$
	- (b) We can think of (n) as being the number of numbers less tham which are not a multiple of a factor of n (except the factor 1). So ifp is prime, its only factors are 1 and p, so every other number is not a multiple of a factor that isn't 1, excepp itself. Thus $(p) = p \cdot 1$. For p^2 , the factors are 1p and p^2 , so the multiples of the factors that aren't 1 are p; 2p; 3p; :::; p^2 , of which there arep. So $(p^2) = p^2$ p. For p^3 , the factors are 1p; p^2 and p^3 , so the multiples of the factors that aren't 1 are p; 2p; 3p; :::; p^2 ; (p + 1) p; :::; 2p²; (2p + 1) p; :::, that is, the multiples of p² are contained in the multiples of p, of which there are p^2 . So $(p^3) = p^3$ p^2 .
	- (c) Using the same method as above, the factors \mathbf{p} $\mathbf{\hat{q}}$ are 1; p; q and pq, so the multiples of the factors that aren't 1 arep; $2p; 3p; \dots; qp(q$ of them) and $q; 2q; 3q; \dots; pq$ (p of them), but we don't want to count pq twice. So $(pq) = pq q (p 1)$.
- 6. We use the fact that the medians divide ABC into 2 equal area pieces, and thas is 2 $\frac{2}{3}$ along the median fromA (you can prove these by considering the areas of smaller triangles with the same heights).

Let the median from A meet BC at P, since ST is parallel to BC triangles APC and AST are similar - 3 angles equal. SincesS = $\frac{2}{3}$ $\frac{2}{3}$ AP then the area ofAST is $\frac{4}{9}$ the area of APC which is half the area ofABC so the area ofAST is $\frac{2}{9}$ the area ofABC.

Senior Questions

1. Let $f(x) = 2x^n$ ⁿ nx² + 1, then $f^{\theta}(x) = 2 \text{nx}(x^{n-2} - 1)$. So f has stationary points at x = 0 and x = 1 (since n > 3 and odd). Taking the second derivative $\mathcal{N}(x)$ = $2n(n-1)x^{n-2}$ 2n, sof $^{\emptyset\emptyset}(0) = 2n < 0$ and f $^{\emptyset\emptyset}(1) = 2n(n-1)$ 2n = 2n(n 2) > 0. $Sox = 0$ is a local max andx = 1 is a local min.

Finally $f(0) = 1 > 0$ and $f(1) = 3$ n < 0. Since these are the only stationary points, f is monotonic between/outside of them. Since $x = 0$ is a local max, and positive there is one root forx < 0 , which is unique since is monotonic decreasing fox < 0 . Sincef (0) > 0 > f (1) and f is monotonic between 0 and 1 there is exactly one root for $0 < x < 1$. Sincex = 1 is a local min, f (1) < 0 and f (x) is monotonic increasing for $x > 1$ there is exactly one root for $x > 1$. Thus, in total, there are 3 roots.

or

2. Take the log of both sides and the di erentiate both sides with respect to.

$$
\log f(x) = x \log 1 + \frac{1}{x}
$$

$$
\frac{f'(x)}{f(x)} = \log(1 + \frac{1}{x}) - \frac{1}{x+1}
$$

3. Draw the graph ofy = $\frac{1}{1}$ $\frac{1}{t}$ for t between 1 and 1 $\pm \frac{1}{x}$ and we see that the area under the curve is larger than the area of the rectangle with base 1 $\frac{1}{\chi}$ = 1 and height $\frac{1}{1+\frac{1}{\chi}}$, so

$$
\frac{Z_{1+\frac{1}{x}}}{1} \frac{1}{t} dt = \log \left(1 + \frac{1}{x}\right) > \frac{1}{x} \frac{x}{x+1} = \frac{1}{1+x}.
$$

Thus $\frac{f(0(x))}{f(x)}$ $\frac{f'(x)}{f(x)} > 0$, and sincef (x) > 0 for all x so isf $f(x)$.