

MATHEMATICS ENRICHMENT CLUB.¹ Solution Sheet 3, May 21, 2013

1. The dimensions of the brick are integers

$$a_{0} = c_{0} \mod 10$$

$$a_{1} = \frac{c_{0} \times 10}{10} + c_{1} \mod 10$$

$$a_{2} = \frac{c_{1} + \frac{c_{0}}{10}}{10} + c_{2} \mod 10$$

$$a_{3} = 6 \frac{c_{2} + \frac{c_{1} + b_{10}^{c_{0}} c}{10}}{10} + c_{3} \pmod 10$$

$$a_{3} = 6 \frac{c_{2} + \frac{c_{1} + b_{10}^{c_{0}} c}{10}}{10} + c_{3} \pmod 10$$

Solving in order from b_0 to b_3 one $\$ nds $b_0=3$, $b_1=5$ or 0. Then if $b_1=5$ we $\$ nd no solution for b_3 , so $b_1=0$. Then $b_2=0$ or 5, but this time if b_2 , so

Senior Questions

- 1. Solve using induction, or visithtp://en.wikipedia.org/wiki/Squared_triangular_number#Proofs for a cute geometrical representation.
- 2. $1^2 + 2^2 + n^2 = \frac{1}{6}(2n^3 + 3n^2 + n)$, so $\lim_{n \ge 1} \frac{1^2 + 2^2 + n^2}{n^3} = \frac{1}{3}$.
- 3. (I could be wrong) Choose one of 13 values for the triplet and one of 4 suits to exclude and there are 13 4 possible triplets, then $\frac{12}{5}$ combinations of the remaining suit are left. So there are 13 4 $\frac{12}{5}$ possible hands.