


# Mechanical and Manufacturing Engineering

# Course Outline Term 2 2019

# MTRN4110 ROBOT DESIGN

### Contents

| 1. | Staff contact details                                                                   | 2 |
|----|-----------------------------------------------------------------------------------------|---|
|    | Contact details and consultation times for course convenor                              |   |
|    | Contact details and consultation times for additional lecturers/demonstrators/lab staff | 2 |
| 2. | . Important links                                                                       | 2 |
|    | Course details                                                                          |   |
|    | Credit points                                                                           |   |
|    | Contact hours                                                                           |   |

#### 3. Course details

#### **Credit points**

This is a 6 unit-of-credit (UoC) course and involves 5 hours per week (h/w) of face-to-face contact.

The normal workload expectations of a student are approximately 25 hours per term for each UOC, including class contact hours, other learning activities, preparation and time spent on all assessable work.

You should aim to spend about 12.5 h/w on this course. The additional time should be spent in making sure that you understand the lecture material, completing the set assignments, further reading, and revising for any examinations.

#### **Contact hours**

|          | Day     | Time      | Location                      |   |
|----------|---------|-----------|-------------------------------|---|
| Lectures | Tuesday | 1pm - 3pm | Webster Theatre B (K-G15-290) | • |

#### 6. Assessment

#### Assessment overview

| Assessment                         | Group<br>Project?<br>(#<br>Students<br>per group) | Length             | Weight | Learning<br>outcomes<br>assessed | Assessment criteria                                                      | Due date and submission requirements      | Deadline for absolute fail | Marks returned                |
|------------------------------------|---------------------------------------------------|--------------------|--------|----------------------------------|--------------------------------------------------------------------------|-------------------------------------------|----------------------------|-------------------------------|
| Quiz (4)                           | No                                                | 10 multiple choice | 40%    | 1 and 2                          | Lecture material from weeks 1-7                                          | During week 2, 3,<br>6, and 8             | N/A                        | One week after assessment     |
| Individual assignment <sup>1</sup> | No                                                | Demonstration      | 40%    | 1, 2, and 3                      | Refer to assignment specifications provided via Moodle for exact details | Meeting with a demonstrator, week 4 and 7 | 1 week later               | One week after assessment     |
| Group assignment <sup>2</sup>      | Yes (4)                                           | Competition        | 20%    | 1, 2, 3, and 4                   | Refer to assignment specifications provided via Moodle for exact details | Meeting with a demonstrator, week 10      | Week 10                    | Upon release of final results |

- 1. The main assignment of this course is a project on developing a maze-solving robot. The students will form in groups of 4 to complete the project. Students will be assessed both individually and in a group. The separate assessment will be based on the performance of each student on completing their individual tasks.
- 2. In week 10, the students will present their project results by participating in a maze-solving competition. The assessment will be based on the completion and ranking in the competition.

Course Outline: MTRN4110

## Appendix A: Engineers Australia (EA) Competencies

Stage 1 Competencies for Professional Engineers

|                                         | Program Intended Learning Outcomes                                                                    |
|-----------------------------------------|-------------------------------------------------------------------------------------------------------|
|                                         | PE1.1 Comprehensive, theory-based understanding of underpinning fundamentals                          |
| Knowledge<br>Skill Base                 | PE1.2 Conceptual understanding of underpinning maths, analysis, statistics, computing                 |
| Knowledg<br>Skill Base                  | PE1.3 In-depth understanding of specialist bodies of knowledge                                        |
| : Kn<br>d Sk                            | PE1.4 Discernment of knowledge development and research directions                                    |
| PE1:<br>and                             | PE1.5 Knowledge of engineering design practice                                                        |
|                                         | PE1.6 Understanding of scope, principles, norms, accountabilities of sustainable engineering practice |
| ing<br>ility                            | PE2.1 Application of established engineering methods to complex problem solving                       |
| neer<br>1 Ab                            | PE2.2 Fluent application of engineering techniques, tools and resources                               |
| PE2: Engineering<br>Application Ability | PE2.3 Application of systematic engineering synthesis and design processes                            |
| PE2<br>App                              | PE2.4 Application of systematic approaches to the conduct and management of engineering projects      |
|                                         | PE3.1 Ethical conduct and professional accountability                                                 |

PE3: Professional and Personal Attributes