

School of Civil and Environmental Engineering Term 2, 2021 CVEN3304 CONCRETE STRUCTURES

COURSE DETAILS			
Units of Credit	6		
Contact hours	6 hours per week		
Lecture	Monday, 16:00 – 18:00	Online	
	Thursday, 09:00 – 11:00	Online	
Workshop		Check timetable for location	
	Thursday, 14:00 – 16:00	Face-to-Face/Online	
	Thursday, 16:00 – 18:00	Face-to-Face/Online	
	Friday, 10:00 – 12:00	Face-to-Face/Online	
	Friday, 12:00 – 14:00	Face-to-Face/Online	
Course Coordinator and Lecturer	Dr Taehwan Kim (Coordinator and Lecturer) email: taehwan.kim@unsw.edu.au office: Rm 718		
Lecturer	Dr Sascha Eisenträger email: s.eisentraeger@unsw.edu.au office: Rm 614	u	

INFORMATION ABOUT THE COURSE

This course introduces students to concrete materials (CM) and the design of reinforced concrete (RC) structural elements subject to bending, shear and combined bending and axial compression. These include concrete materials (cements, aggregates and admixtures and hardened concrete properties), concrete mechanical properties, reinforcement types and properties, durability requirements, behaviour of reinforced concrete cross-sections in bending at both service and ultimate loads, ultimate strength analysis and design of cross-sections in flexure (singly and doubly reinforced, ductility), serviceability analysis and design of beams (cracked section analysis, deflection and crack control), ultimate strength in shear, bond anchorage and curtailment (simple and continuous beams and one-way slabs), short and slender concrete columns (interaction diagrams).

HANDBOOK DESCRIPTION

See link to virtual handbook -

https://www.handbook.unsw.edu.au/undergraduate/courses/2021/CVEN3304/

OBJECTIVES

The objectives of this course are to:

- x Introduce you to concrete components, basics of hydration reaction occurred in concrete, and effects of concrete components on characteristics and performance of concrete. This objective contributes to the achievement of learning outcomes 1 and 2.
- x Introduce you to the fundamentals of reinforced concrete (RC) design under bes- ce y de you t

4.	Explain the design principles and concepts for ultimate strength design, and serviceability design	PE1.2, PE1.5, PE1.6, PE2.2
5.	Conduct structural analysis to understand the behaviour of structural members	PE1.2, PE1.3, PE1.6, PE2.1, PE2.2, PE3.4
6.	Design structural members for given conditions (bending moment, shear force, and axial force) in compliance with Australian Standards.	PE1.2, PE1.3, PE1.6, PE2.1, PE2.2, PE3.4

For each hour of contact it is expected that you will put in at least 1.5 hours of private study.

COURSE PROGRAM

Term 2 2021

Date	Торіс	Lecture Content	Demonstration Content	
31/05/2021				
(Week 1)	Concrete Materials	Introduction of Concrete and Cement Hydration	Concrete and cement production	
Dr Kim				
07/06/2021		Concrete Componente	Concrete Componente	
(Week 2)	Concrete Materials	Concrete Components	Concrete Components	
Dr Kim		Fresh concrete properties	Fresh concrete properties	
14/06/2021	RC Introduction	Public holiday Monday 14th	Hardened Concrete	
(Week 3)	RC design	June	Properties	
Kim	No class on Monday 14th	RC Introduction		
	June	RC Design		
21/06/2021	RC Design	RC Design	RC Introduction	
(Week 4)	RC Beam – Bending	Flexural Behaviour I	RC Design	
28/06/2021		Flexural Behaviour of Beam II	Flexural Behaviour of Beam and II	
(Week 5)	RC Beam – Bending	and III		
Dr Kim		Flexural Beam Design		
05/07/2021		Flexibility week for all		
(Week 6)		courses (non -teaching)		
12/07/2021		Shear Behaviour of Beam	Flexural Behaviour of Beam	
(Week 7)	RC Beam – Shear		III and Flexural Design	
Dr Eisenträger		Shear Design of Beam	Shear Behaviour of Beam	
19/07/2021	I	1	1	

(Week 8)

RC Beam – Serviceabir9l44.n0 Tc 0 Tw 4.627r Shear BehaviSher EiseBeam

Dr Eisenträger

ASSESSMENT OVERVIEW

Item	Length	Weighting	Learning outcomes assessed	Assessment Criteria (this needs to explicitly describe what students are expected to demonstrate in the task)	Due date and submission requirements	Deadline for absolute fail	Marks returned	
1. Assignments	1. Assignments							
Online Assignments	7 to 10 days/each	Total 40 %	1, 2, 3, 4, 5, 6	Six Online Assignments	Will be announced in Moodle	Will be announced in Moodle		

Appendix A: Engineers Australia (EA) Competencies

Stage 1 Competencies for Professional En.gom)-1a.3 (IOn Tw 25.108) Td(s)5.8 A)-.u)-12.1 280 Td[20)-13 (2)]T0 Tc 0 Tw oel8i,